³í¹®°Ë»ö
Author Soon Sun Hong1*, Hyun seung Lee1*, Kyu Won Kim1
Place of duty 1Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
Title HIF-1alpha: a Valid Therapeutic Target for Tumor Therapy
Publicationinfo Cancer Research and Treatment 2004 Dec; 036(06): 343-353.
Key_word ARD1,Angiogenesis,Anticancer therapy,Cell proliferation/survival,Glucose metabolism,HIF-1,Iron metabolism,PHD,SUMO,pVHL,p300/CBP,Transcription factor
Full-Text
Abstract Hypoxia plays a major role in the induction of angiogenesis during tumor development. One mechanism by which tumor cells respond to a reduced oxygen level is via the activation of hypoxia-inducible factor-1 (HIF-1). HIF-1 is an oxygen-dependent transcriptional activator that plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and the highly regulated HIF-1alpha subunits. The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, phosphorylation and sumoyaltion. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, SUMO and p300/ CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)-mediated ubiquitin/proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, under the hypoxia condition, the HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Under hypoxic conditions, HIF-1 eventually acts as a master regulator of numerous hypoxia-inducible genes. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation and survival, and to glucose and iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1alpha itself or the blocking of HIF-1alpha interacting proteins inhibits tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. Therefore, this review summarizes the molecular mechanism of HIF-1alpha stability, the biological functions of HIF-1 and its potential applications for cancer therapies. (Cancer Research and Treatment 2004;36:343-353)